

¹H, ¹³C AND ¹⁵N NMR SPECTRA OF COUPLING PRODUCTS OF BENZENEDIAZONIUM SALTS WITH ALIPHATIC NITRO COMPOUNDS AND STUDY OF THEIR E/Z ISOMERISM

Antonin LYCKA

*Research Institute of Organic Syntheses,
532 18 Pardubice-Rybitví, Czech Republic*

Received October 20, 1995

Accepted November 28, 1995

The ¹H, ¹³C and ¹⁵N NMR spectra have been measured of coupling products of benzenediazonium salts with nitromethane, nitroethane, 1-nitropropane, 2-nitroethanol and of their sodium salts, and the chemical shifts have been unambiguously assigned. The coupling products have been found to exist only in their hydrazone tautomeric forms. Stereospecific behaviour of the coupling constants ²J(¹⁵N, ¹H) and ²J(¹⁵N, ¹³C) in the ¹⁵N isotopomers and NOESY have been used to differentiate between the E and Z geometrical isomers. The above-mentioned compounds exist as Z isomers in deuteriochloroform and predominantly (>95%) as E isomers in dimethyl sulfoxide, while the sodium salts are present only as E isomers in dimethyl sulfoxide.

Key words: 1-Nitroaldehyde phenylhydrazones; ¹H, ¹³C and ¹⁵N NMR; E/Z isomerism.

As early as 1875, Mayer¹ found that benzenediazonium sulfate reacted with nitroethane to give a coloured product and assigned to it the structure of azo compound C₆H₅-N=N-CH(CH₃)NO₂. Bamberger and Schmidt² described an isolation of two "azo" forms of the reaction product of benzenediazonium salt with nitromethane which had the melting points of 74.5 and 84.5 °C. Jones and Kenner³ isolated a single compound only with rather different melting point (92 °C), and, on the other hand, they obtained two forms in the case of the coupling product of benzenediazonium salt with 2-nitroethanol. Later it was proved⁴ that the coupling products of benzenediazonium salts can exist in the respective hydrazone forms, which makes the E/Z geometrical isomerism possible. Results of studies of these and similar types of compounds are summarized in a review article⁴. Different isomers can be obtained from different solvents⁵⁻⁸. It was suggested to adopt the dilution ¹H NMR experiments⁵ (which presume that the position of intramolecularly bound acidic proton does not change with dilution) or the different magnitudes of the coupling constants ¹J(¹³C, ¹H) (ref.⁸) for differentiation between the E and Z isomers.

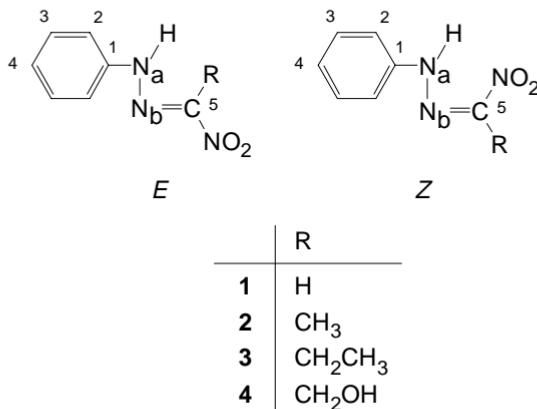
The aim of the present communication was to measure the ¹H, ¹³C and ¹⁵N NMR spectra of the substances prepared by coupling of benzenediazonium chloride with aliphatic nitro compounds, assign unequivocal chemical shifts, adopt the NOESY spec-

troscopy and stereospecific behaviour of the coupling constants $^2J(^{15}\text{N}, ^1\text{H})$ and $^2J(^{15}\text{N}, ^{13}\text{C})$ in the ^{15}N isotopomers and their anions for differentiation between the *E* and *Z* geometrical isomers, and experimentally (dis)prove the conclusions published earlier.

EXPERIMENTAL

Nitroformaldehyde phenylhydrazone (**1**), 1-nitroacetaldehyde phenylhydrazone (**2**), 1-nitropropionaldehyde phenylhydrazone (**3**), and 1-nitro-2-hydroxyacetaldehyde phenylhydrazone (**4**) were prepared by azo coupling reactions of benzenediazonium chloride with nitromethane, nitroethane, 1-nitropropane, and 2-nitroethanol, respectively, in weak acid or basic media¹.

The ^{15}N labelled isotopomers were prepared similarly by using ^{15}N -aniline (15% ^{15}N) and $\text{Na}^{15}\text{NO}_2$ (95% ^{15}N).


The ^1H , ^{13}C and ^{15}N NMR spectra (δ , ppm) were measured with a Bruker AMX-360 apparatus at 360.13, 90.56, and 36.50 MHz, respectively, at room temperature. The ^1H and ^{13}C chemical shifts are referenced to internal tetramethylsilane ($\delta = 0.0$) and the ^{15}N chemical shifts to external nitromethane in a coaxial capillary ($\delta = 0.0$). Positive values of the chemical shifts denote downfield shifts with respect to the standard.

For the measurements we used ca 0.3 M solutions in CDCl_3 and $[\text{D}_6]\text{DMSO}$. The anions of compounds **1–4** were prepared *in situ* by adding the equivalent amount of 4 M sodium methoxide into the solutions of the compounds in hexadeuteriodimethyl sulfoxide.

RESULTS AND DISCUSSION

The values of ^1H , ^{13}C and ^{15}N chemical shifts and the coupling constants $^nJ(^{15}\text{N}, ^1\text{H})$ and $^nJ(^{15}\text{N}, ^{13}\text{C})$ of compounds **1–4** and their salts are presented in Tables I–IV.

Compounds **1–4** exist in solutions as the hydrazone forms, which can be proved by NMR especially on the basis of the value of chemical shift of the quaternary carbon atom C-5, the coupling constant $^1J(^{15}\text{N}_a, ^1\text{H})$ ca 97 Hz, and the values $\delta(^{15}\text{N})$ typical of the C–NH–N=C arrangement^{9,10}.

With regard to the unsymmetrical substitution at the C-5 carbon atom these compounds can exist as *E* or *Z* isomers. For differentiation between these geometrical isomers of hydrazones it was suggested⁵ to adopt the dilution ¹H NMR experiments which are based on the fact that the position of an acidic NH proton involved in intramolecular bond does not change with changing concentration in contrast to the $\delta(^1\text{H})$ value of an NH group involved in intermolecular or no hydrogen bond¹¹.

We used the NOESY spectroscopy¹² to evaluate the spatial arrangement of substituents and observed the respective cross-peaks of NH proton with *ortho* protons in the phenyl nucleus in both CDCl₃ and [D₆]DMSO, the additional interactions with the nearest proton of R substituent of =CRNO₂ fragment (R = H, CH₃, CH₂OH, and CH₂CH₃) being observed only in [D₆]DMSO. From these results it follows that the compounds **1–4** exist only as *Z* isomers in deuteriochloroform but as *E* isomers (at least 95%) in

TABLE I
¹H, ¹³C and ¹⁵N NMR chemical shifts (δ , ppm) and absolute values of coupling constants ($J(\pm 0.3$ Hz), Hz) in *Z* isomers of compounds **1–4** in deuteriochloroform

Atom	Compound							
	1		2		3		4	
	$\delta(^1\text{H})$	$\delta(^{13}\text{C})$	$\delta(^1\text{H})$	$\delta(^{13}\text{C})$	$\delta(^1\text{H})$	$\delta(^{13}\text{C})$	$\delta(^1\text{H})$	$\delta(^{13}\text{C})$
1	–	141.39 (6.9) ^a	–	141.59 (6.8) ^a	–	141.81 (6.3) ^a	–	142.28 (6.7) ^a
2	7.29	115.23 (2.1) ^a	7.25	114.86 (2.1) ^a	7.24	114.79 (2.8) ^a	7.29	115.51 (2.4) ^a
3	7.38	129.62	7.34	129.51	7.33	129.45	7.37	129.63
4	7.16	125.21	7.08	124.29	7.08	124.11	7.15	125.34
5	7.46 (16.8) ^b	124.51 (3.7) ^a	–	132.56 (5.7) ^a	–	136.38 (5.6) ^a	–	134.32 (5.1) ^a
6	–	–	2.41 (3.3) ^b	17.99 (10.3) ^a	2.79 (3.3) ^b	24.64 (9.1) ^a	4.66	61.19 (11.3) ^a
7	–	–	–	–	1.28	10.72 (2.7) ^a	–	–
N _a	12.48 (97.7) ^h	–222.4 ^{c,d}	12.25 (97.4) ^h	–226.3 ^{c,e}	12.19 (97.4) ^h	–227.0 ^{c,f}	12.35 (97.5) ^h	–222.6 ^{c,g}
N _b	(2.5) ^b	–62.1 ^{c,d}	(2.4) ^b	–70.5 ^{c,e}	(2.4) ^b	–71.5 ^{c,f}	(2.5) ^b	–63.7 ^{c,g}

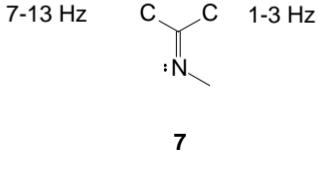
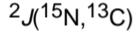
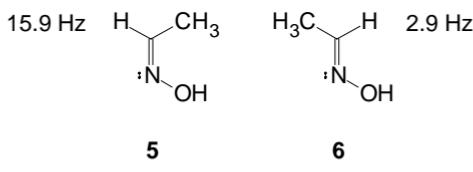
^a $^2J(^{15}\text{N}_b, ^{13}\text{C})$; ^b $^nJ(^{15}\text{N}_b, \text{H})$; ^c $\delta(^{15}\text{N})$; ^d $^1J(^{15}\text{N}_a, ^{15}\text{N}_b) = 9.4$ Hz; ^e $^1J(^{15}\text{N}_a, ^{15}\text{N}_b) = 9.6$ Hz; ^f $^1J(^{15}\text{N}_a, ^{15}\text{N}_b) = 9.9$ Hz; ^g $^1J(^{15}\text{N}_a, ^{15}\text{N}_b) = 9.6$ Hz; ^h $^nJ(^{15}\text{N}_a, \text{H})$.

[D₆]DMSO. In contrast to ref.⁸, we observed no isomerisation of compounds **1–4** in deuteriochloroform. However, the compounds **1–4** are little stable and decompose on standing in solutions after several days.

Both the dilution experiments and NOESY with the compounds studied by us have the drawback in that they do not allow evaluation of the arrangement of substituents in salts of compounds **1–4**, i.e. in the cases when the signal of NH group is absent from the ¹H NMR spectra.

Bradamante et al.⁸ suggested utilization of different magnitudes of coupling constant ¹J(¹³C,¹H) of =CHR group in the compounds C₆H₅NHN=CHR. The values of ¹J(¹³C,¹H) are greater in the Z isomer than in the E isomer; thus for R = CH₃ ¹J(¹³C,¹H) = 180.6 Hz in Z isomer and ¹J(¹³C,¹H) = 160 Hz in E isomer. These values, however, depend distinctly on the type of substituent R, hence the unequivocalness of the method will make itself felt only in the cases when both the isomers are available and their

TABLE II
¹H, ¹³C and ¹⁵N NMR chemical shifts (δ , ppm) and absolute values of coupling constants (J (± 0.3 Hz), Hz) in E isomers of compounds **1–4** in hexadeuteriodimethyl sulfoxide




Atom	Compound							
	1		2		3		4	
	$\delta^1\text{H}$	$\delta^{13}\text{C}$	$\delta^1\text{H}$	$\delta^{13}\text{C}$	$\delta^1\text{H}$	$\delta^{13}\text{C}$	$\delta^1\text{H}$	$\delta^{13}\text{C}$
1	—	142.21 (6.2) ^a	—	143.46 (6.5) ^a	—	143.86 (6.6) ^a	—	144.01 (6.6) ^a
2	7.28	114.46 (2.6) ^a	7.38	114.59 (2.6) ^a	7.38	114.89 (2.3) ^a	7.21	114.77 (2.3) ^a
3	7.41	129.65	7.38	129.41	7.38	129.33	7.41	129.46
4	7.09	123.25	7.04	122.44	7.05	122.54	7.07	122.93
5	8.59 (2.5) ^b	136.22 (13.1) ^a	—	143.68 (14.3) ^a	—	147.44 (13.8) ^a	—	145.21 (13.8) ^a
6	—	—	2.51 (1.4) ^b	11.53 (1.4) ^a	3.01 (0.8) ^b	18.21 (1.9) ^a	4.28	52.35
7	—	—	—	—	1.17	9.78	—	—
N _a	11.95	—231.4 ^{d,e}	10.48	—236.9 ^{d,f}	10.61	—233.9 ^{d,g}	11.01	—222.6 ^{d,h}
N _b		—36.8 ^{d,e}	—	—52.5 ^{d,f}		—54.3 ^{d,g}		—63.7 ^{d,h}

^a ⁿJ(¹⁵N_b,¹³C); ^b ⁿJ(¹⁵N_b,H); ^c ³J(¹⁵N_a,H); ^d δ (¹⁵N); ^e ¹J(¹⁵N_a,¹⁵N_b) = 9.3 Hz; ^f ¹J(¹⁵N_a,¹⁵N_b) = 9.8 Hz; ^g ¹J(¹⁵N_a,¹⁵N_b) = 9.8 Hz; ^h ¹J(¹⁵N_a,¹⁵N_b) = 9.6 Hz.

coupling constants can thus be compared. For compound **1** only the coupling constant $^1J(^{13}\text{C}, ^1\text{H}) = 210$ Hz of the major isomer was measured⁸, the other isomer being present in very low amount (insufficient for the measurement). In the case of anion of compound **1**, which also shows only one set of NMR signals, the spatial arrangement of substituents could be unambiguously determined neither⁸. The method cannot be used for compounds of the type $\text{C}_6\text{H}_5\text{--NHN=CR}^1\text{R}^2$ where there is no corresponding coupling constant and the differences in $^1J(^{13}\text{C}, ^1\text{H})$ values of the more distant carbon atoms are not conclusive.

For unequivocal differentiation between the *E* and *Z* isomers of compounds **1–4** and their sodium salts we adopted the stereospecific behaviour of the coupling constants $^2J(^{15}\text{N}_b, ^1\text{H})$ and $^2J(^{15}\text{N}_b, ^{13}\text{C})$ in the ^{15}N enriched compounds as a generally applicable method. The values of the respective coupling constants are distinctly higher in the “*cis*” orientation of free electron pair at nitrogen and the corresponding proton or carbon atom^{13,14}, which follows from the data published for the model compounds **5–7**.

The values of coupling constants for planar arrangement of substituents differs very distinctly and are very little affected by the character of substituents.

From the comparison of $^2J(^{15}\text{N}_b, ^1\text{H})$ values for the arrangement $=\text{CHNO}_2$ in compound **1** in deuteriochloroform ($J = 16.8$ Hz, Table I) and in $[\text{D}_6]\text{DMSO}$ ($J = 2.5$ Hz, Table II) it is obvious that compound **1** has the configuration *Z* in CDCl_3 and configuration *E* in $[\text{D}_6]\text{DMSO}$. The same conclusion is also valid for compounds **2–4** if the different magnitudes of coupling constants $^2J(^{15}\text{N}_b, ^{13}\text{C}-5)$ in CDCl_3 and $[\text{D}_6]\text{DMSO}$ are taken into account (see Tables I and II).

In the case of anion of compound **1**, which also shows only one set of NMR signals, it was impossible to unequivocally determine the spatial arrangement of substituents⁸.

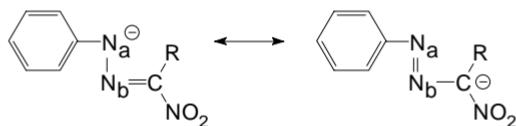
TABLE III
 ^{15}N Chemical shifts (δ , ppm) and absolute values of coupling constants ($J(\pm 0.3 \text{ Hz})$, Hz) in Z isomers of compounds **1–3** in hexadeuteriodimethyl sulfoxide

Nitrogen atoms	Compound		
	1	2	3
N_a	–63.9	–72.9	–73.7
N_b	–220.9	–222.1	–222.9
$^1J(^{15}\text{N}_a, ^{15}\text{N}_b)$		9.9	9.8

TABLE IV
 ^1H , ^{13}C and ^{15}N NMR chemical shifts (δ , ppm) and absolute values of coupling constants ($J(\pm 0.3 \text{ Hz})$, Hz) in E isomers of sodium salts of compounds **1–3** in hexadeuteriodimethyl sulfoxide

Atom	Compound			
	1	2	3	
	$\delta^1\text{H}$	$\delta^{13}\text{C}$	$\delta^1\text{H}$	
1	–	154.94 (5.5) ^a	–	153.88 (5.7) ^a
2	7.54	120.58 (4.2) ^a	7.61	120.53 (3.9) ^a
3	7.34	129.03	7.34	129.31
4	7.14	125.38	7.12	125.05
5	8.36 (1.6) ^b	133.76 (6.6) ^a	–	141.15 (5.9) ^a
6	–	–	2.33	11.42 (1.4) ^a
7	–	–	–	–
N_a		2.2 ^c		–15.3 ^c
N_b		74.2 ^c		56.6 ^c
				72.4 ^{c,d}

^a $^nJ(^{15}\text{N}_b, ^{13}\text{C})$; ^b $^2J(^{15}\text{N}_b, \text{H})$; ^c $\delta(^{15}\text{N})$; ^d $^1J(^{15}\text{N}_a, ^{15}\text{N}_b) = 13.9 \text{ Hz}$.


(In ref.⁸ the anions were obtained with sodium dimsyl, whereas we used 4 M sodium methoxide. The differences in values of ^{13}C chemical shifts of compound **1** are lower than 0.8 ppm.) A single set of signals was also obtained with each of the anions of compounds **2** and **3**. This can correspond to the presence of either one isomer or two interconvertible isomers whose interconversion would, of course, have to be fast in the NMR time scale. The coupling constant $^2J(^{15}\text{N}_b, ^1\text{H})$ is approximately the same in compound **1** and its anion (2.5 and 1.5 Hz, respectively), and similarly the coupling constants $^2J(^{15}\text{N}_b, ^{13}\text{C})$ of compounds **2** and **3** differ only very little from those of their respective anions. Hence it can be stated that the anions of compounds **1–3** maintain the same mutual arrangement of substituents as the starting substances, and a rapid rotation in NMR time scale can be excluded too because in such a case the values of coupling constants of *E* and *Z* forms would have to approach their arithmetic mean, i.e. the values of ca 8–10 Hz for $^2J(^{15}\text{N}_b, ^1\text{H})$ and 5–6 Hz for $^2J(^{15}\text{N}_b, ^{13}\text{C}-5)$. They would have to be about twice as large in the *Z* isomer. The above-described analysis documents the advantages of application of ^{15}N labelled compounds and general applicability and unambiguousness of the result obtained.

In our previous communications we dealt with studies of products of azo coupling^{15–17} of arenediazonium salts and with nitrosation¹⁸ of substances with activated methylene group.

Tables I–IV present the values of $\delta(^{15}\text{N})$ of compounds **1–4** and their anions. The effect of nitro group in compounds **1–4** is manifested by an upfield shift of $\delta(^{15}\text{N})$ by ca 15–20 ppm as compared with the coupling products at a methylene group activated by less electronegative substituents^{15–17}.

On the basis of empirical calculations, Bradamante et al.⁸ presume the presence of negative charge at the aldehydic methine carbon atom such as shown in Scheme 1.

The ^{15}N chemical shifts that we have measured for the anions of compounds **1–3**, and the coupling constant $^1J(^{15}\text{N}, ^{15}\text{N}) = 13.9$ Hz for the anion of compound **3** distinctly support this idea experimentally (better than the ^{13}C NMR data do). The downfield shift of $\delta(^{15}\text{N})$ in the anions of compounds **1–3**, as compared with the starting compounds **1–3** themselves, can be considered a shift to values typical of $-\text{N}=\text{N}-$ arrangement. In (*E*)-azobenzene it is $\delta(^{15}\text{N}) = 130.1$ (hexadeuteriodimethyl sulfoxide)¹⁹, in substituted azobenzenes the values of $^1J(^{15}\text{N}, ^{15}\text{N})$ reach the value of ca 15 Hz (ref.¹⁹).

SCHEME 1

The author expresses his gratitude to the Grant Agency of the Czech Republic for financial support (Grant No. 203/93/2065).

REFERENCES

1. Mayer V., Ambuhl G.: Ber. Dtsch. Chem. Ges. 8, 751 (1875).
2. Bamberger E., Schmidt O.: Ber. Dtsch. Chem. Ges. 34, 2001 (1901).
3. Jones E. C. S., Kenner J.: J. Chem. Soc. 1930, 919.
4. Parmerter S. M. in: *Organic Reactions* (R. Adams, A. H. Blatt, V. Boekelheide, A. C. Cope, D. Y. Curtin, F. C. McGrew and C. Niemann, Eds), Vol. 10, Chap. 1. Wiley, London 1959.
5. Karabatsos G. J., Taller R. A.: J. Am. Chem. Soc. 63, 3624 (1963).
6. Chacko V. P., Kalia K. C., Chakravorty A.: Indian J. Chem. 13, 41 (1975).
7. Feuer H., Spinicelli L. F.: J. Org. Chem. 41, 2981 (1976).
8. Barchiesi E., Bradamante S., Carfagna C., Ferraccioli R.: J. Chem. Soc., Perkin Trans. 2 1988, 1565.
9. Lycka A.: Annu. Rep. NMR Spectrosc. 26, 247 (1993).
10. Witanowski M., Stefaniak L., Webb G. A.: Annu. Rep. NMR Spectrosc. 25, 1 (1993).
11. Gunther H.: *NMR Spectroscopy*. Wiley, Chichester 1995.
12. Neuhaus D., Williamson M. P.: *The Nucelar Overhauser Effect in Structural and Conformation Analysis*. VCH, New York 1989.
13. Botto R. E., Westerman P. W., Roberts J. D.: Org. Magn. Reson. 11, 510 (1978).
14. Berger S., Braun S., Kalinowski H.-O.: *NMR Spektroskopie von Nichtmetallen*, Band 2. Thieme, Stuttgart 1992.
15. Lycka A.: Collect. Czech. Chem. Commun. 45, 3354 (1980).
16. Lycka A.: Collect. Czech. Chem. Commun. 49, 2801 (1984).
17. Jirman J., Lycka A.: Dyes Pigm. 8, 55 (1987).
18. Jirman J., Lycka A., Ludwig M.: Collect. Czech. Chem. Commun. 53, 136 (1990).
19. Lycka A.: Collect. Czech. Chem. Commun. 47, 1112 (1982).